	11341
CAS # 307-24-4	Perfluorohexanoic acid (PFHxA)
	Synonym ¹ s: EINECS 206-196-6; NSC 5213; Perfluorohexanoic acid;
	Undecafluoro-1-hexanoic acid; UNII-ZP34Q2220R
	RTECS # ² : MO8445000
FFFFF	EINECS # ³ : 206-196-6
	Molecular Weight⁴: 314.0499
	Molecular Formula ⁵ : C6-H-F11-O2
ţ ţ ţ ţ OH	Common Salts:
	Sodium perfluorohexanoate, CAS # 2923-26-4
	Ammonium perfluorohexanoate, CAS # 21615-47-4
PHYSICAL CHARACTERISTICS	
Primary Use/	Protective coatings for fabrics and carpet, paper coatings, insecticide
	formulations, surfactants /Perfluorochemicals/6
	Long-chain perfluoroalkanecarboxylic acids and their salts are surface-
	active chemicals (surfactants), which greatly reduce the surface tension
(w)	(surface energy) of water, aqueous solutions, and organic liquids even
000	at low concentrations. These acids (C6-C12) and derivatives are used as
10 X 10 X	wetting, dispersing, emulsifying, and foaming agents. /Long-chain
	perfluoroalkanecarboxylic acids/7
+	"PFHxA is both a degradation product and potential impurity in
	fluorotelomer-based products and in perfluoroalkane sulfonyl-based
	electrochemical fluorination products. PFHxA is not generally
	manufactured and used itself for commercial purposes. PFCAs such as
No.	PFHxA were released directly into the environment during the historical
	manufacture and use (of) per- and poly-fluoroalkyl substances".8
Physical state, odor at room	Colorless liquid ⁹
temperature & pressure	
Melting point; Boiling point	Not found; BP = 157 deg C^{10}
Solubility	In water, 15,700 mg/L at ambient temperature ¹¹
Specific Gravity	10001000
SAFETY/PHYSICAL HAZARDS	
Vapor Pressure	1.98 mm Hg at 25 deg C (est) ¹² 264 Pa (exp.) ¹³
Flammability	Not found
Flashpoint	Not found
Flammability Rating	Not found
Auto Ignition Point	Not found
Combustion products	Special hazards arising from the substance or mixture: Carbon oxides,
6	Hydrogen fluoride ¹⁴
Explosivity (UEL, LEL, shock	Not found
sensitive)	
	· ·

A molecular entity capable of donating a hydro[ge]n to an acceptor (Bronsted base). 15 Not an oxidizer, as is donating.
Non-harmonized classifications: H290 Met. Corr. 1 (May be corrosive to metals); H314 – Skin Corr. 1B ¹⁶
Not found
Incompatible materials: Strong oxidizing agents ¹⁷
Not found
The acute toxicity of the sodium salt of perfluorohexanoic acid (PFHxA)
is considered low with a rat oral LD ₅₀ > 1,750 mg/kg bw. 18
Not found in RTECS
Not found in RTECS
Not found in RTECS
Values ranging from 4,500 mg/kg/90D-I to 18,000 mg/kg/90D-I ¹⁹
Not found in the IARC database
Not found on Prop 65 list ²⁰ ; Not found in the CCRIS database
Not found in HAZMAP
See wildlife toxicity below
Not found on Prop 65 list ²¹
Details from developmental study re: NaPFHx and reproductive study re: NH_4PFHx available (Dewitt 2015)
The reproductive oral toxicity of the ammonium salt of PFHxA in
pregnant female mice was investigated by Iwai and Hoberman (2014).
PFHxA was administered once daily from gestation day 6 through 18 in
doses up to 500 mg/kg b. w. ²² Adverse effects occurred only in the 175
mg/kg/d group (from Phase 2) and consisted of increased stillborn
pups, pups dying on PPD I, and reduced pup weights on PPD I. 23 The
maternal and reproductive no observable adverse effect level (NOAEL)
of PFHxA ammonium salt was 100 mg/kg/d. ²⁴
See aquatic toxicity below

Genotoxicity/Mutagenicity	Not found in the GENETOX database
Endocrine Disruption/Thyroid Effects	 Micronucleus (G04048) Completed Rats: Harlan Sprague-Dawley Male Equivocal Female Negative Salmonella (A97455) Completed Negative²⁵ PFHxA did not generate reactive oxygen species or cause DNA damage in human HepG2 cells (Eriksen et al. 2010), and was found not to be genotoxic based on negative results from both the bacterial reverse mutation assay and the in vitro chromosomal aberration assay (Loveless et al. 2009). 26 Mulkiewicz et al. (2007) evaluated the acute cytotoxicity of among others PFHxA in several in vitro assays using eukaryotic cell lines, bacteria and enzymatic assays. The toxicity was in general low and increased with chain length, and the toxicity of PFHxA was about ten times lower than PFOA. 27 In an in vitro assay with human colon carcinoma (HCT116) cells estimated values of EC₅₀ decreased with elongation of fluorocarbon chain from PFHxA > PFHpA > PFOA > PFNA etc. The cytotoxicity was rather low but intensified after longer exposure (72 h) (Kleszczynski et al. 2007) Again a study showing stronger effect by the substance with the shortest chain. 28 Found on TEDX List of Potential Endocrine Disruptors 29 The mechanism is a competitive binding to the thyroid hormone plasma transport protein transthyretin (TTR) that will alter/decrease the free thyroxine (T4) in blood. This competitive binding capacity of some poly- and perfluorinated compounds was studied by Weiss et al. (2009) with a radio-ligand-binding assay. The binding potency of the fluorinated chemicals was 12-300 times lower than for thyroxine itself and decreased in the order: PFHxS > PFOS/PFOA > PFHxA > PFBS. PFBA and FTOHs had no effect in that assay. 30
	See wildlife toxicity below
Immunotoxicity	DELL A : 1
Other organ toxicity	PFHxA is hepatotoxic ³¹ Not found in HAZMAP or NIOSH Pocket Guide
Skin, Eye and Respiratory Effects	THE TOURS IT HAZIVIAF OF WICOTT FOCKET GUIDE
Irritant – Skin, Eye, or Respiratory	Non-harmonized classifications: H311 – Acute Tox. 3 (Toxic in contact with skin). 32
Corrosive – S , E , or R	Non-harmonized classifications: H314 – Skin Corr. 1B; H318 – Eye Dam. 1 ³³

Permanent Damage – S, E, or R	Not found
Sensitizer – S & R	Not found in AOEC database
Asthmagen – Initiator or	Not found in AOEC database
Exacerbator	One human study examined the association between PFHxA exposure
	and childhood asthma. The study reported no difference in serum
0	levels (median = 0.2 ng/mL) in children aged 10-15 years with (n = 231)
	or without (n = 225) asthma, and no dose-response trend (Dong et al.,
	2013). ³⁴
Skin Absorption, Kp	Not found
LOAEL	As initially described in section 4.2.1, COS-1 cells were transfected with
50	mouse or human PPARα plasmids to investigate the effects of different
	PFASs on PPARα activation. PFHxA (5-100 μM) caused a significant dose
	-dependent activation of mouse and human PPARα compared with
	controls lowest observed adverse effect level (LOAEL, 20 and 10 µM,
=	respectively). Greater PPARα activity was induced by PFASs with longer
	chain lengths and sulphonates were more potent than carboxylates.
	PFNA (mouse, 5 μM; human, 11 μM) and PFOA (6 μM; 16 μM) were
	most potent at activating PPARα, followed by PFDA (20 μM; human not
	active), PFHxA (38 μM; 47 μμν), PFBA (51 μM; 75 μM), PFHxS (76 μM;
	81 μM), PFOS (94 μM; 262 μM) and PFBS (317 μM; 206 μM) (Wolf et
	al., 2008a). ³⁵
NOAEL	In a 90-day gavage study in rats a NOAEL value for PFHxA of 20 mg/kg
	bw/day was identified based on effects on the liver and blood
	parameters (Loveless et al., 2009). In another study, in which PFHxA
	was administered in drinking water, a NOAEL of 50 mg/kg bw/day
	males and 200 mg/kg bw in females was determined (Chengelis et al.,
	2009). This is higher than the NOAEL for PFOA. ³⁶ The Chengelis et al.,
	2009 study NOAELs were based on liver histopathology and liver weight
	changes. ³⁷
	The reproductive arm of a 90-day toxicological evaluation in which
	Sprague Dawley rats were administered PFHxA (0, 20, 100 or 500
	mg/kg b.w. per day NaPFHx) by oral gavage (see Section 5.2.3)
	indicated NOAELs of 20 mg/kg b.w. per day (P1 adult males) and 100
	mg/kg b.w. per day (F1 pups), based on reduced body-weight
	parameters. A parallel developmental toxicity study (same doses, GD 6-
	20) indicated a maternal and developmental NOAEL of 100 mg/kg b.w.
	per day, based on maternal and fetal reduced body weight (Loveless et
	al., 2009). ³⁸
Benchmark Dose Response (BMD)	Russell <i>et al.</i> (2013) calculated the benchmark dose (BMD10 = 95%
and the second of the consequence of the second of the sec	lower confidence limit of a dose resulting in a 10% increase in risk) to
d.	13 mg PFHxA/kg b. w. per day. 39
	Company of the contract of the

	metabolites observed after oral dosing in either rodent species
	(Gannon et al. 2011). 40
Synergistic or Antagonistic Effects	It was also observed that exposure of JEG-3 cells to a <i>mixture</i> of the
	eight PFASs (0.6 μM each) altered/increased cellular lipid pattern (up to
	3.4-fold) at concentrations well below those that generate toxicity. 41
Interactions	PFHxA and PFOA were used as model perfluorinated carboxylic acids
	(PFCAs) to characterize the major site of PFCA interaction in human
	sera. Using novel heteronuclear saturation transfer difference nuclear
	magnetic resonance spectroscopy experiments, human serum albumin
	(HSA) was identified as the major site of interaction for both PFHxA and
	PFOA in human sera. Heteronuclear single quantum coherence nuclear
	magnetic resonance experiments were then performed to interrogate
	site-specific interactions of PFHxA and PFOA with isolated HSA. PFHxA
	was found to bind specifically to Sudlow's drug-binding site II, whereas
2	PFOA interacted preferentially with Sudlow's drug-binding site I at the
	lower concentration, with additional interactions developing at the
	higher concentration. These experiments highlight the utility of nuclear
	magnetic resonance spectrometry as a tool to observe the in situ
	interactions of chemical contaminants with biological systems. Both
	PFCAs displaced the endogenous HSA ligand oleic acid at
	concentrations lower than observed for the drugs ibuprofen and
	phenylbutazone, which are established HSA ligands. Interactions
	between PFCAs and HSA may affect the pharmacokinetics and
	distribution of fatty acids and certain drugs in the human body and
	warrant further investigation. 42
GHS Codes	Non-harmonized classifications: H314 – Skin Corr. 1B; H290 – Met.
GH3 Codes	Corr. 1; H318 – Eye Dam. 1; H301 and H311 – Acute Tox. 3; H330 –
	Acute Tox. 2 ⁴³
Environmental and Human Health	
RfC/RfD	Not found in EPA IRIS database
	Not found on the March 2016 ATSDR Minimal Risk Levels List
	NOT FOUND OF THE WIGHT ED TO THE WINNER THE TEST OF THE PROPERTY OF THE PROPER
Adverse Effect Levels: DNEL, PNEC,	
PNEL Uselth Recod Evnesure Limits	
Health Based Exposure Limits	Not found in NIOSH Pocket Guide
NIOSH-REL/IDLH/Ceiling Limits	Not found in Niosa Pocket Guide Not found on OSHA website
OSHA-PEL	
ACGIH TLV-TWA	None Not found in NIOSH Pocket Guide
TLV-STEL	Not found in NIOSH Pocket Guide
Biomonitoring Action Limits	Description Water indicated HCDD.
Drinking Water Standards	Concentrations found in Drinking Water indicated HSDB;
	There are no set threshold values for the content of PFAS in
	groundwater / drinking water in Denmark. 44

Other

In autopsy tissues PFHxA partitioned mostly to the liver and brain (median: 68.3 and 141 ng/g, respectively). 45

Analysis of Spanish human autopsy tissues revealed that the highest concentrations of most PFAS, including PFHxA, were found in lung tissues but the highest PFAS in the brain was PFHxA. PFOS concentration in the brain was less than a third of that (Perez et al. 2013). Thus the body half-life of PFHxA seems to be much longer in humans than in experimental animals. 46

PFCAs mimic fatty acids, and specifically PFHxA is attached to a different binding site on serum albumin compared to PFOA; however, PFOA is more strongly bound, and 5-6 PFOA molecules can interact with each albumin molecule (D'eon and Mabury 2010). 47

ENVIRONMENTAL & ECO-SYSTEM HAZARDS (Bulk of information cited UNEP 2015a and UNEP 2015b)

PBT

As with PFOA, PFHxA is very persistent and is not transformed or degraded by abiotic mechanisms (e.g. hydrolysis and photolysis) or biotic mechanisms in water or soil. Precursors such as fluorotelomers or PFAS with other functional groups attached will undergo primary degradation to PFHxA.⁴⁸

On ECHA Public Activities Coordination Tool (PACT) list for PBT; Risk Management Option Analysis is under development⁴⁹

Categorized by the Australian government as P, but not B or T. 50

Data on the degradation half-life of PFHxA in soil, sediment, and water are not available. However, based on a read-across from degradation studies of PFOA, PFHxA is likely to be environmentally persistent. Although, the biodegradation of PFHxA has not been directly studied, PFHxA is a metabolite of 6:2 FTOH degradation (Butt et al. 2014). Studies of 6:2 FTOH degradation in soil and sediment do not indicate that PFHxA completely mineralizes with a half-life less than the six month criterion listed in Annex D 1 (b) (i). 52

Limited experimental data suggest that PFCAs may react with photochemically-generated hydroxyl radicals in the atmosphere. Taniyasu et al. (2013a) conducted a field study on the photolysis of perfluoroalkyl substances at Mt. Mauna Kea, Hawaii (4200 m). PFHxA concentrations decreased by 0.8% after 106 days of solar irradiation. This suggests that the atmospheric oxidation of PFHxA occurs extremely slowly and is not expected to impact the half-life of PFHxA in the atmosphere. ⁵³

Therefore, it would meet the POP criteria for persistence.

Bioaccumulation

As for PFOA, PFHxA is both hydrophobic and lipophobic, and so does not follow typical pattern of partitioning to fatty tissues and accumulating there. Instead it tends to bind to proteins, so protein-rich tissues such as liver; kidney and blood are their main repositories. Precursors such as fluorotelomers may be partially responsible for the observed bioaccumulation of the acids. ⁵⁴

There are two mechanistic theories for observed bioaccumulation of perfluoroalkyl acid substances: 1) partitioning to membrane phospholipid (PL) which have higher affinity for charged species than neutral storage lipids; and 2) protein binding (PB) model assumes interactions with proteins, including serum albumin, liver fatty acid binding proteins (L-FABP) and organic anion transporters determine distribution, accumulation and half-lives. Likely that both mechanisms are at work, where the protein component would account for the accumulation in the blood and elimination and reabsorption as mediated by transporter proteins, and phospholipid describing the distribution into tissues where little or no binding occurs (e.g., liver). Increasing bioaccumulation tendency with increasing C chain length could be explained in the PL model by increasing hydrophobicity which decreases elimination rates, For PB model, bioaccumulation is determined based on balance of affinities for albumin, L-FABP and renal transporter proteins. 55

Serum Elimination Half-lives⁵⁶:

Rat: Male -1.6 hours; Female -0.6 hours (concentrated in tissues: bladder, plasma, kidney, liver and skin⁵⁷)

Mouse: 1 hour⁵⁸ (concentrated in tissues: plasma, bladder, liver,

kidney, lung, heart⁵⁹) **Monkey:** 14-47 hours⁶⁰

Human: 32 days**

** The toxicokinetics of perfluorohexanoic acid (PFHxA) has recently been evaluated in human ski waxers (Russell *et al.* 2013). The decline in blood levels after the ski season was used to determine the apparent human blood elimination half-life to 14-49 days with a geomean of 32 days. These calculations assume that PFHxA is eliminated from the body, when it leaves the blood, however, instead PFHxA may be distributed to various organs as it was measured in liver, kidney, bone and brain from some autopsy samples from Spain (Perez *et al.* 2013). The log BCFs of the C4-C7 carboxylic acids were found to be below 1 thus indicating little bioaccumulation potential of these substances in fish. Short chain PFCAs are not considered bioaccumulative according to the regulatory criteria of 1000–5000 L/kg. 62

The bioaccumulation of PFOS and other PFAS is higher in the marine environment than in soil. 63 These findings are believed to be valid also for the short-chain perfluorinated carboxylic and sulfonic acids and their salts. According to a number of reports (e.g. Ellis et al. (2004), Butt et al. (2010), Martin et al. (2013)), the acids are not very bioaccumulative in themselves but precursors such as fluorotelomer alcohols and acrylates accumulate and are subsequently transformed in the organs of animals to the corresponding acids, which are retained in the body.64 Presence in environment and biota: Study of Spanish Jucar river basin, water and biota samples -water conc. 1.44-18.7 ng/L, detected in 40% of samples, non-detect in sediment; non-detect in biota sampled (limits of quantification 0.02- $2.26 \,\mu g/kg.)^{65}$ Human: study of 20 individuals at autopsy Catalonia, Spain. Mean concentrations: 180 ng/g ww brain, 115 ng/g liver, 50 ng/g lung, 36 ng/g bone, 6 ng/g kidney. 66 Concentration in brain of PFHxA significantly higher than all other PFAS tested. Plant bioaccumulation: hydroponic (water only) uptake rate constant k₁ (per day) NA (no good slope fit) in roots, 0.6±0.2 in shoots; elimination half life 0.21 days; (this rapid elimination was similar for all PFAS studied except PFBA, which had 1.83 day half life). 67 Cape Cod groundwater: detected in 50% of 20 private wells sampled, max concentration 2 ng/L. Sampling from other studies and locations, groundwater and surface water, varied from 14-110 ng/L. 68 An additional study on the uptake of PFHxA by marine ogliochetes in sediment also determined a BSAF (The Biota-Sediment (or Biota-Soil) Accumulation Factor) of 2.2 to 3.5 g, dw/g, ww, indicating some uptake of PFHxA into sediment dwelling invertebrates (Lasier et al. 2011). ... There are currently no regulatory screening criteria for bioaccumulation based on BSAFs in sediment, however typically BSAFs > 1 are associated with a potential for bioaccumulation. 69 Controlled laboratory bioaccumulation experiments with terrestrial worms indicate that BSAF values for PFHxA are greater than 1 g, dw/g, ww (Table 6.5). Although there are no formal criteria for interpreting BSAF values, BSAF values greater than one indicate that PFHxA may accumulate from soil or sediment to invertebrates. BSAFs for a number of terrestrial plants were available in the literature. ranging from 0.3 to 7.7 g, dw/g, ww for plants (Table 6.5). 70 BAF **BCF** PFHxA was not found to bioaccumulate in laboratory experiments using rainbow trout (Onchorynchus mykiss) with a reported BCF of

*	0.59(1). According to a classification scheme(2), this BCF suggests the potential for bioconcentration in aquatic organisms is low(SRC). Modelled BCF ~ 0.1 in fish assuming Log BCF:C chain length linear relationship, based on experimentally determined BCF for long chain carboxylic acids in rainbow trout (carcass, liver and blood) Study in muscle tissue of two fish species in Chinese lake determined Log BCF of C4-C7 carboxylic and sulfonic acids all below 1 (little bioaccumulation potential of these substances in fish)
BMF	
Ecological Toxicity	EC ₅₀ ; Species: <i>Geitlerinema amphibium</i> (Blue-green Algae) Exponential Growth Phase BA-13; Conditions: saltwater, static, 20 deg C, pH 7.6-7.8; Concentration: 3.18 mM for 72 hr ; Effect: decreased population growth rate /formulation/ ⁷⁴ 2 other higher values available from this paper in HSDB, species = <i>Chlorella vulgaris</i> (Green Algae) and <i>Skeletonema marinoi</i> (Diatom)
	Toxicity tests with rainbow trout, <i>Daphnia magna</i> , and the alga (<i>P. subcapitata</i>) showed corresponding 50 % effect concentrations of >100 mg/L. Other algae (<i>S. marinoi</i> and <i>G. amphibium</i>) as well as a marine bacterium were less susceptible to PFHxA with effect concentrations ranging from 998.7 – 1482 mg/L. ⁷⁵
Aquatic Toxicity: LC ₅₀ , EC ₅₀ , ErC ₅₀ ,	Rainbow trout 96 hr LC ₅₀ >99.2 mg/L ⁷⁶
NOAEC/NOEC	Rainbow trout 56 d. NOEC reprod. =10.1 mg/L ⁷⁷
NOAEG/NOEC	Algae (P . subcapitata) 72 hr ECb ₅₀ and EcR ₅₀ >100 mg/L; (Hoke 2012) ⁷⁸
	Algae (G. amphibium) 72 h. IC ₅₀ optical density 999 mg/L (Ding 2013) 19
	Algae (S. Subspicatus) 72 h. $ErC_{50} = 86 \text{ mg/L}$; NOEC=50 mg/L (ENVIRON 2014) ⁸⁰
	Daphnia magna: 48 hr $LC_{50} = >96.5 \text{ mg/L}^{81}$
	d. magna: 48 hr EC ₅₀ 1,048 mg/L; EC ₅ 596 mg/L
	d. magna: 21 d. chronic EC ₅₀ 1,273 mg/L (survival) 776 mg/L per capita no. offspring. 82
	General: The acute toxicity decreased with decreasing carbon chain
	length, but the polymer did not show a dose related effect. In a chronic
	toxicity test performed with PFHxA, mortality was observed at similar
	concentrations as in the acute toxicity test, indicating that toxicity did
	not increase with increasing exposure time. Effects on mortality,
	reproduction and population growth rate occurred at similar
4	concentrations, indicating no specific effect of PFHxA on sublethal
	endpoints. C4-C6 chemistry is thus less hazardous to daphnids than C7-
	Co chamistry Vat those compounds are persistent hard to remove
	C8 chemistry. Yet, these compounds are persistent, hard to remove from the environment and production volumes are increasing. 83
Mammalian Toxicity: LC ₅₀ , EC ₅₀ ,	from the environment and production volumes are increasing. ⁸³

ErC ₅₀ , NOAEC/NOEC	
Wildlife Toxicity: LC_{50} , EC_{50} , EC_{50} , EC_{50} ,	Thorois same evidence to suggest that we all the interest in
NOAEC/NOEC	There is some evidence to suggest that perfluoroalkyl acids (PFAA's)
110/120/11020	can impact essential endocrine pathways and neurodevelopment in birds and other animals. In a study by Vongphachan et al. (2011),
	PFHxA altered the messenger RNA (mRNA) expression of thyroid
	hormone (TH)—responsive transcripts in chicken embryonic neuronal
	(CEN) cells.
	In a later study, the same research group determined <i>in ovo</i> effects of PFHxA exposure (maximum dose 5 9700 ng/g egg) on embryonic death,
	developmental endpoints, tissue accumulation, mRNA expression in
	liver and cerebral cortex, and plasma TH levels. PFHxA accumulated in
	the three tissue compartments analyzed as follows: yolk sac > liver >
	cerebral cortex (Cassone et al. 2012). ⁸⁴
Breakdown/degradation	Results of studies in soil and sediment for 6:2 FTOH demonstrated
/combustion products	primary biodegradation with half-lives of less than 2 days.
	Transformation products such as PFHxA did not degrade appreciably
	within half a year. ⁸⁵
Anaerobic degradation	They are neither biodegradable under aerobic or anaerobic
	environmental conditions in water or soil.86
Aerobic degradation	They are neither biodegradable under aerobic or anaerobic
	environmental conditions in water or soil. ⁸⁷
Other observable ecological	In the present study, we assessed the developmental toxicity and
effects (e.g. BOD)	teratogenicity of PFCs with different numbers of carbon atoms on
	Xenopus embryogenesis. An initial frog embryo teratogenicity assay- Xenopus (FETAX) assay was performed that identified
	perfluorohexanoic (PFHxA) and perfluoroheptanoic (PFHpA) acids as
	potential teratogens and developmental toxicants. The mechanism
	underlying this teratogenicity was also investigated by measuring the expression of tissue-specific biomarkers such as
	phosphotyrosine-binding protein, xPTB (liver); NKX2.5 (heart); and
	Cyl18 (intestine). Whole-mount in situ hybridization, reverse
	transcriptase-polymerase chain reaction (RT-PCR), and histologic
	analyses detected severe defects in the liver and heart following
	exposure to PFHxA or PFHpA. In addition, immunoblotting revealed
	that PFHpA significantly increased the phosphorylation of extracellular
	signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), while
	PFHxA slightly increased these, as compared with the control. These
	results suggest that PFHxA and PFHpA are developmental toxicants and
	teratogens, with PFHpA producing more severe effects on liver and
	heart development through the induction of ERK and JNK
	phosphorylation. ⁸⁸

Fate and Transport: Aquatic	The shorter chain length acids tend to be more soluble in water and have a lower potential for sorption to particles than the long-chain analogues. Thereby, they have a higher potential for aqueous long-transport. 89
	Based on a classification scheme (1), log Koc values of 1.63-2.35(2),
	indicate that PFHxA is expected to adsorb to suspended solids and
	sediment (SRC). A pKa of -0.16(3) indicates PFHxA will exist entirely in
	the anion form at pH values of 5 to 9 and, therefore, volatilization from
	water surfaces is not expected to be an important fate process(SRC).
	PFHxA is not expected to undergo hydrolysis in the environment due to
	the lack of functional groups that hydrolyze under environmental
	conditions (4). According to a classification scheme (5), a reported BCF
	of 0.59 in rainbow trout (6), suggests bioconcentration in aquatic
	organisms is low (SRC). Biodegradation data in water were not
	available (SRC, 2016). 90
	Fate data on PFHxA are sparse. PFCAs are degradation products of
	other PFASs and are not trans-formed/degraded by hydrolysis or
	photolysis in water to any appreciable extent. ⁹¹
Fate and Transport: Terrestrial	Based on a classification scheme (1), log Koc values of 1.63-2.35(2),
	indicate that PFHxA is expected to have very high to moderate mobility
	in soil (SRC). The pKa of PFHxA is -0.16(3), indicating that this
	compound will exist entirely in anion form in the environment and,
	therefore, volatilization from moist soil surfaces is not expected to be
	an important fate process(SRC). PFHxA is expected to volatilize from
	dry soil surfaces(SRC) based upon an estimated vapor pressure of 2.0
	mm Hg at 25 deg C(SRC), determined from a fragment constant
	method(4). Biodegradation data in soil were not available (SRC,
	2016).92
Fate and Transport: Atmospheric	According to a model of gas/particle partitioning of semivolatile organic
	compounds in the atmosphere (1), PFHxA, which has an estimated
	vapor pressure of 2.0 mm Hg at 25 deg C (SRC), determined from a
	fragment constant method (2), is expected to exist solely as a vapor in
	the ambient atmosphere. Vapor-phase PFHxA is degraded in the
	atmosphere by reaction with photochemically-produced hydroxyl
	radicals(SRC); the half-life for this reaction in air is estimated to be 31
	days(SRC), calculated from its rate constant of 5.2X10-13 cu
	cm/molecule-sec at 25 deg C(SRC) that was derived using a structure
	estimation method(2). PFHxA does not contain chromophores that
2	absorb at wavelengths >290 nm (3) and, therefore, is not expected to
	be susceptible to direct photolysis by sunlight (SRC). 93
•	Fluorotelomers (FTOHs) are volatile and will be transported over long
	distances via the atmosphere ⁹⁴

Transport Issues	
Factors affecting bioavailability	See "Interactions" endpoint
Global Environmental Impacts	
Ozone Depletion Potential (ODP)	Not found
Global Climate Change	Not found
Greenhouse Gas Production	Not found
Acid Rain Formation	Not relevant
Special Reports	
EU	Short-chain Polyfluoroalkyl Substances (PFAS) – A literature review of
	information on human health effects and environmental fate and effect
-	aspects of short-chain PFAS, Environmental project No. 1707, 2015
	http://www2.mst.dk/Udgiv/publications/2015/05/978-87-93352-15-
	5.pdf
2 E	Polyfluoroalkyl substances (PFASs) in textiles for children – Survey of
	chemical substances in consumer products No. 136, 2015
	http://www2.mst.dk/Udgiv/publications/2015/04/978-87-93352-12-
	4.pdf
	Survey of PFOS, PFOA and other perfluoroalkyl and polyfluoroalkyl
	substances - Part of the LOUS-review, Environmental project No. 1475,
-	2013
	http://www2.mst.dk/Udgiv/publications/2013/04/978-87-93026-03-
	2.pdf

Notes on chemical research: Not found in NIOSH Pocket Guide; HAZMAP

www.expub.com; Chemical Identity Page for Perfluorohexanoic acid.

www.expub.com; RTECS for Perfluorohexanoic acid.

³ www.expub.com; Chemical Identity Page for Perfluorohexanoic acid.

⁴ U.S. National Library of Medicine, ChemIDplus, a Toxnet Database, entry for "Perfluorohexanoic acid", accessed online at: https://chem.sis.nlm.nih.gov/chemidplus/rn/startswith/307-24-4

⁵ U.S. National Library of Medicine, ChemIDplus, a Toxnet Database, entry for "Perfluorohexanoic acid", accessed online at: https://chem.sis.nlm.nih.gov/chemidplus/rn/startswith/307-24-4

⁶ HSDB: Manufacturing/Use Information for Perfluorohexanoic acid, CAS# 307-24-4, [Calafat AM et al; Environ Sci Technol 40: 2128-34 (2006)] **PEER REVIEWED**, accessed online at: https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~g8Uf8K:1

⁷ HSDB: Manufacturing/Use Information for Perfluorohexanoic acid, CAS# 307-24-4, [Siegemund G et al; Fluorine Compounds, Organic. Ullmann's Encyclopedia of Industrial Chemistry 7th ed. (1999-2015). NY, NY: John Wiley & Sons. Online Posting Date: June 15, 2000] **PEER REVIEWED**, accessed online at: https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~g8Uf8K:1

⁸ DeWitt 2015: DeWitt, Jamie C. *Toxicological Effects of Perfluoroalkyl and Polyfluoroalkyl Substances*. Humana Press; 2015 edition (April 14, 2015).

⁹ HSDB: Chemical/Physical Property Information for Perfluorohexanoic acid, CAS# 307-24-4 [ChemSpider; Perfluorohexanoic acid. (307-24-4). London, UK: Royal Chemical Society. Available from, as of Jan 22, 2016: http://www.chemspider.com/Search.aspx **PEER REVIEWED**, accessed online at: https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~g8Uf8K:1

¹⁰ HSDB: Chemical/Physical Property Information for Perfluorohexanoic acid, CAS# 307-24-4 [Savu PM; Fluorinated Higher Carboxylic Acids. Kirk-Othmer Encyclopedia of Chemical Technology. (1999-2015). New

York, NY: Jphm Wiley & Sons. On-line Posting Date: 4 Dec 2000] **PEER REVIEWED**, accessed online at: https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~g8Uf8K:1

¹¹ HSDB: Chemical/Physical Property Information for Perfluorohexanoic acid, CAS# 307-24-4 [Zhao L et al; *Chemosphere* **114**: 51-8 (2014)] **PEER REVIEWED**, accessed online at: https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~g8Uf8K:1

HSDB: Chemical/Physical Property Information for Perfluorohexanoic acid, CAS# 307-24-4 [US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.11. Nov, 2012. Available from, as of Jan 11, 2015: http://www2.epa.gov/tsca-screening-tools **PEER REVIEWED**, accessed online at: https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~g8Uf8K:1

¹³ NICNAS 2016: Australian Government, Department of Health, National Industrial Chemicals Notification and Assessment Scheme (NICNAS). Environment Tier II Assessment for Short-Chain Perfluorocarboxylic Acids and their Direct Precursors, Last update December 5, 2016. Accessed online at: https://www.nicnas.gov.au/chemical-information/imap-assessments/imap-assessments/tier-ii-environment-assessments/short-chain-perfluorocarboxylic-acids-and-their-direct-precursors#PhysicalandChemicalProperties

¹⁴ HSDB: Chemical Safety and Handling Information for Perfluorohexanoic acid, CAS# 307-24-4 [Sigma-Aldrich; Safety Data Sheet for Undecafluorohexanoic acid. Product Number: 29226, Version 5.2 (Revision Date 06/26/2014). Available from, as of January 28, 2016: http://www.sigmaaldrich.com/safety-center.html **PEER REVIEWED**, accessed online at: https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~g8Uf8K:1

¹⁵ ChEBI: European Molecular Biology Laboratory, Entry for "perfluorohexanoic acid", Last modified November 12, 2014, Accessed online at:

https://www.ebi.ac.uk/chebi/searchId.do;jsessionid=A3E773E2379E1CC785E8C9183E8E85DF?chebiId=CHEBI:83492

¹⁶ ECHA: European Chemicals Agency Summary of Classification and Labelling for Undecafluorohexanoic Acid, CAS# 307-24-4, Accessed online 1/18/17, https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/125329

¹⁷ HSDB: Chemical Safety and Handling Information for Perfluorohexanoic acid, CAS# 307-24-4 [Sigma-Aldrich; Safety Data Sheet for Undecafluorohexanoic acid. Product Number: 29226, Version 5.2 (Revision Date 06/26/2014). Available from, as of January 28, 2016: http://www.sigmaaldrich.com/safety-center.html **PEER REVIEWED**, accessed online at: https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~g8Uf8K:1

¹⁸ **Danish EPA 2015b**: Danish Environmental Protection Agency. Short-chain Polyfluoroalkyl substances (PFAS) – A literature review of information on human health effects and environmental fate and effect aspects of short-chain PFAS. Environmental project No. 1707, 2015. Page 38. Accessed online at: http://www2.mst.dk/Udgiv/publications/2015/05/978-87-93352-15-5.pdf

¹⁹ <u>www.expub.com</u>; RTECS for Perfluorohexanoic acid. Original reference; Chengelis, et al. A 90-Day repeated dose oral (gavage) toxicity study of perfluorohexanoic acid (PFHxA) in rats (with functional observational battery and motor activity determinations). *Reproductive Toxicology*, **27(3-4)**, June 2009, Pages 342-352.

²⁰ CA OEHHA: State of California Environmental Protection Agency, Proposition 65 List of Chemicals Known to the State To Cause Cancer or Reproductive Toxicity, October 21, 2016, Accessed online 1/19/17, http://oehha.ca.gov/media/downloads/proposition-65//p65single10212016.pdf

²¹ CA OEHHA: State of California Environmental Protection Agency, Proposition 65 List of Chemicals Known to the State To Cause Cancer or Reproductive Toxicity, October 21, 2016, Accessed online 1/19/17, http://oehha.ca.gov/media/downloads/proposition-65//p65single10212016.pdf

²² Danish EPA 2015b. Page 38.

²³ **Iwai and Hoberman 2014:** Iwai H and Hoberman AM. Oral (Gavage) Combined Developmental and Perinatal/Postnatal Reproduction Toxicity Study of Ammonium Salt of Perfluorinated Hexanoic Acid in Mice. *International Journal of Toxicology* 2014, **33(3)** 219-237.

²⁴ Danish EPA 2015b. Page 38.

²⁵ NTP: Testing Status of Agent at NTP – Perfluorohexanoic acid (PHHXA) – M040048, Accessed online 1/19/17, https://ntp.niehs.nih.gov/testing/status/agents/ts-m040048.html

²⁶ DeWitt 2015: DeWitt, Jamie C. *Toxicological Effects of Perfluoroalkyl and Polyfluoroalkyl Substances*. Humana Press; 2015 edition (April 14, 2015).

²⁷ Danish EPA 2015b. Page 39.

²⁸ Danish EPA 2015b. Page 39.

²⁹ TEDX: Search for 307-24-4, Accessed online, 1/13/17, http://www.endocrinedisruption.org/endocrine-disruption/tedx-list-of-potential-endocrine-

 $[\]label{thm:calculation} disruptors/chemicalsearch?sname=\&x=0\&y=0\&action=search\&sall=1\&searchfor=any\&scas=307-24-4\&searchcats=all$

³⁰ Danish EPA 2015b. Page 30.

Danish EPA 2015a: Danish Environmental Protection Agency. Polyfluoroalkyl substances (PFASs) in textiles for children. Survey of chemical substances in consumer products No. 136, 2015. Page 82. Accessed online at: http://www2.mst.dk/Udgiv/publications/2015/04/978-87-93352-12-4.pdf

³² ECHA: European Chemicals Agency Summary of Classification and Labelling for Undecafluorohexanoic Acid, CAS# 307-24-4, Accessed online 1/18/17, https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/125329

³³ ECHA: European Chemicals Agency Summary of Classification and Labelling for Undecafluorohexanoic Acid, CAS# 307-24-4, Accessed online 1/18/17, https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/125329

³⁴ Danish EPA 2015b. Page 39.

³⁵ **EFSA 2014:** Ricardo-AEA Ltd. For European Food Safety Authority (EFSA). Extensive literature search and provision of summaries of studies related to the oral toxicity of perfluoroalkylated substances (PFASs), their precursors and potential replacements in experimental animals and humans – Area 1: Data on toxicokinetics (absorption, distribution, metabolism, excretion) in in vitro studies, experimental animals and humans; Area 2: Data on toxicity in experimental animals; Area 3: Data on observations in humans. EFSA supporting publication 2014:EN-572. Accessed online:

http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2014.EN-572/abstract. Page 29. Ref. study Wolf et al, 2008.

³⁶ Danish EPA 2015a. Page 82.

³⁷ Chengelis 2009: Chengelis CP, et al. A 90-Day repeated dose oral (gavage) toxicity study of perfluorohexanoic acid (PFHxA) in rats (with functional observational battery and motor activity determinations). *Reproductive Toxicology*, 27(3-4), June 2009, 342-352.

³⁸ EFSA 2014. Page 29.

³⁹ Danish EPA 2015b. Page 39.

⁴⁰ Danish EPA 2015b. Page 26.

⁴¹ Danish EPA 2015b. Page 29.

⁴² HSDB: Metabolism/Pharmacokinetics information for Perfluorohexanoic acid, CAS# 307-24-4 [D'eon JC et al; *Environ Toxicol Chem* **29 (8):** 1678-88 (2010)] **PEER REVIEWED**, accessed online at: https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~g8Uf8K:1

⁴³ ECHA: European Chemicals Agency Summary of Classification and Labelling for Undecafluorohexanoic Acid, CAS# 307-24-4, Accessed online 1/18/17, https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/125329

⁴⁴ Danish EPA 2015b. Page 70.

⁴⁵ Danish EPA 2015b. Page 23.

⁴⁶ Danish EPA 2015b. Page 38.

⁴⁷ Danish EPA 2015b. Page 24.

⁴⁸ Danish EPA 2015b. Page 51.

⁴⁹ ECHA: PACT-RMOA and hazard assessment activities for "Undecafluorohexanoic acid", Accessed online 2/7/17, https://echa.europa.eu/addressing-chemicals-of-concern/substances-of-potential-concern/pact/-/substance-

 $rev/12934/term?_viewsubstances_WAR_echarevsubstanceportlet_SEARCH_CRITERIA_EC_NUMBER=206-196-6\&_viewsubstances_WAR_echarevsubstanceportlet_DISS=true$

⁵⁰ NICNAS 2016.

⁵¹ **ENVIRON 2014.** Assessment of POP Criteria for Specific Short-Chain perfluorinated Alkyl Substances. Report prepared for FluoroCouncil, Washington, DC. Project Number: 0134304A . ENVIRON International Corporation, Arlington, Virginia, January 2014. Page 55.

⁵² ENVIRON 2014. Page 59.

- ⁵³ ENVIRON 2014. Page 59.
- ⁵⁴ Danish EPA 2015b. Page 77.
- Ng and Hungerbuhler 2014: Ng, CA and Hungerbuhler K. Bioaccumulation of Perfluorinated Alkyl Acids: Observations and Models. *Environmental Science & Technology* 2014, 48, 4637-4648.

⁵⁶ Danish EPA 2015b. Page 28.

⁵⁷ **Gannon et al. 2011:** Absorption, distribution, metabolism, and excretion of [1-¹⁴C]-perfluorohexanoate ([¹⁴C]-PFHx) in rats and mice. <u>Toxicology.</u> 2011 Apr 28;**283(1):**55-62 (referenced in Danish EPA 2015b. Page 37).and Ng and Hungerbuhler 2014.

⁵⁸ Danish EPA 2015b. Page 37.

⁵⁹ Gannon et al, 2011 and Ng and Hungerbuhler 2014

⁶⁰ Danish EPA 2015b. Page 37. Reference study: **Chengelis 2009a:** Chengelis CP, et al. Comparison of the toxicokinetic behavior of perfluorohexanoic acid (PFHxA) and nonafluorobutane-1-sulfonic acid (PFBS) in cynomolgus monkeys and rats. *Reprod. Toxicol.* 2009 Jun; **27 (3-4)**, 400–406.

⁶¹ Danish EPA 2015b. Page 38. See Perez et al. 2013 (below).

⁶² Danish EPA 2015b. Page 51.

⁶³ Danish EPA 2013. Lassen, C. Jensen, A.A., Potrykus, A., Christensen, F., Kjølholt, J., Jeppesen, C.N., Mikkelsen, S.H., Innanen, S. (2013). *Survey of PFOS, PFOA and other perfluoroalkyl and polyfluoroalkyl substances*. Part of the LOUS-review. Environmental Project No. 1475, Danish Environmental Protetection Agency, Copenhagen. (ref from Danish EPA 2015b. Page 51.)

⁶⁴ Danish EPA 2015b. Page 51.

- ⁶⁵ Campo et al, 2016. Analysis of the presence of perfluoroalkyl substances in water, sediment and biota of the Jucar River (E Spain), Sources, partitioning and relationships with water physical characteristics, *Environmental Research* **147** (2016) 503-512.
- ⁶⁶ **Perez 2013:** Perez F, et al. Accumulation of perfluoroalkyl substances in human tissues. *Environment International* **59** (2013) 354-362.
- ⁶⁷ **Muller 2016:** Muller CE, et al. Competing Mechanisms for Perfluoroalkyl Acid Accumulation in Plants Revealed Using an Arabidopsis Model System. *Environmental Toxicology and Chemistry*, **35(5)**, pp. 1138-1147. 2016.
- ⁶⁸ **Schaider 2016:** Schaider, LA, et al. Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer. *Science of the Total Environment* **547** (2016) 470-481.
- 69 ENVIRON 2014. Page 61.
- ⁷⁰ ENVIRON 2014. Page 62.
- ⁷¹ HSDB: Environmental Bioconcentration Information for Perfluorohexanoic acid, CAS# 307-24-4 [(1) Conder JM et al; *Environ Sci Technol* **42**: 995-1003 (2008) (2) Franke C et al; *Chemosphere* **29**: 1501-14 (1994)] **PEER REVIEWED**, accessed online at: https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~g8Uf8K:1
- ⁷² Webster & Elllis 2011. Webster, E. M., & Ellis, D. A. (2011). Equilibrium modeling: A pathway to understanding observed perfluorocar-boxylic and perfluorosulfonic acid behavior. *Environmental Toxicology and Chemistry*, **30(10)**, 2229-2236. (ref from Danish EPA 2015b. Page 51.)

⁷³ Zhou 2013. Zhou, Z., Liang, Y., Shi, Y., Xu, L., & Cai, Y. (2013). Occurrence and transport of perfluoroalkyl acids (PFAAs), including short-chain PFAAs in tangxun lake, China. *Environmental Science & Technology*, **47(16)**, 9249-9257. (ref from Danish EPA 2015b. Page 51.)

⁷⁴ HSDB: Ecotoxicity Values for Perfluorohexanoic acid, CAS# 307-24-4 [Latala A et al; *Environ Toxicol Pharmacol* **28 (2)**: 167-71 (2009) as cited in the ECOTOX database. Available from, as of February 22, 2016: http://cfpub.epa.gov/ecotox/quick query.htm **PEER REVIEWED**, accessed online at: https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~g8Uf8K:1

⁷⁵ Danish EPA 2015b. Page 63.

⁷⁶ **Hoke 2012:** Hoke RA, et al. Comparative acute freshwater hazard assessment and preliminary PNEC development for eight fluorinated acids. *Chemosphere* **87** (2012) 725-733 (as cited in Danish EPA 2015b. Page 54).

⁷⁷ ENVIRON 2014. (as cited in ref from Danish EPA 2015b. Page 54.)

⁷⁸ Hoke et al. 2012, As cited in Danish EPA 2015b. Page 57.

⁷⁹ Danish EPA 2015b. Page 57. Reference study: **Ding 2013:** Ding G & Peijnenburg WJGM. Physicochemical Properties and Aquatic Toxicity of Poly- and Perfluorinated Compounds. *Critical Reviews in Environmental Science and Technology*, **43(6)**, 2013, 598-678.

⁸⁰ ENVIRON 2014, As cited in Danish EPA 2015b. Page 57.

⁸¹ Hoke et al. 2012, As cited in Danish EPA 2015b. Page 55.

⁸² **Barmentlo 2015:** Barmentlo SH, et al. Acute and chronic toxicity of short chained perfluoroalkyl substances to Daphnia magna. *Environmental Pollution* **198** (2015) 47-53. (And supplemental information) ⁸³ Barmentlo et al 2015.

⁸⁴ Danish EPA 2015b. Page 39.

⁸⁵ ENVIRON 2014, As cited in Danish EPA 2015b. Page 50.

⁸⁶ Danish EPA 2015b. Page 63.

⁸⁷ Danish EPA 2015b. Page 63.

⁸⁸ Kim 2015: Kim M, et al. Perfluoroheptanoic acid affects amphibian embryogenesis by inducing the phosphorylation of ERK and JNK. *International Journal of Molecular Medicine*, December 2015, **36 (6)**, 1693-1700.

⁸⁹ Danish EPA 2015b. Page 77.

⁹⁰ HSDB: Environmental Fate Information for Perfluorohexanoic acid, CAS# 307-24-4 [(1) Swann RL et al; Res Rev 85: 17-28 (1983) (2) Sapulvado JG et al; Environ Sci Technol 45: 8106-112 (2011) (3) Zhao L et al; Chemosphere 114: 51-8 (2014) (4) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 7-4, 7-5, 15-1 to 15-29 (1990) (5) Franke C et al; Chemosphere 29: 1501-14 (1994) (6) Conder JM et al; Environ Sci Technol 42: 995-1003 (2008)] **PEER REVIEWED**, accessed online at: https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~g8Uf8K:1
⁹¹ Danish EPA 2015b.

⁹² HSDB: Environmental Fate Information for Perfluorohexanoic acid, CAS# 307-24-4 [(1) Swann RL et al; Res Rev 85: 17-28 (1983) (2) Sapulvado JG et al; Environ Sci Technol 45:8106-112 (2011) (3) Zhao L et al; Chemosphere 114:51-8 (2014) (4) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Jan 11, 2016: http://www2.epa.gov/tsca-screening-tools **PEER REVIEWED**, accessed online at: https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~g8Uf8K:1

⁹³ HSDB: Environmental Fate Information for Perfluorohexanoic acid, CAS# 307-24-4 [(1) Bidleman TF; Environ Sci Technol 22: 361-367 (1988) (2) US EPA; Estimation Program Interface (EPI) Suite. Ver. 4.1. Nov, 2012. Available from, as of Jan 11, 2016: http://www2.epa.gov/tsca-screening-tools (3) Lyman WJ et al; Handbook of Chemical Property Estimation Methods. Washington, DC: Amer Chem Soc pp. 8-12 (1990)] **PEER REVIEWED**, accessed online at: https://toxnet.nlm.nih.gov/cgi-

bin/sis/search2/f?./temp/~g8Uf8K:1

⁹⁴ Danish EPA 2015b. Page 52.